Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni.
نویسندگان
چکیده
The antibacterial effect of zinc oxide (ZnO) nanoparticles on Campylobacter jejuni was investigated for inhibition and inactivation of cell growth. The results showed that C. jejuni was extremely sensitive to treatment with ZnO nanoparticles. The MIC of ZnO nanoparticles for C. jejuni was determined to be 0.05 to 0.025 mg/ml, which is 8- to 16-fold lower than that for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 (0.4 mg/ml). The action of ZnO nanoparticles against C. jejuni was determined to be bactericidal, not bacteriostatic. Scanning electron microscopy examination revealed that the majority of the cells transformed from spiral shapes into coccoid forms after exposure to 0.5 mg/ml of ZnO nanoparticles for 16 h, which is consistent with the morphological changes of C. jejuni under other stress conditions. These coccoid cells were found by ethidium monoazide-quantitative PCR (EMA-qPCR) to have a certain level of membrane leakage. To address the molecular basis of ZnO nanoparticle action, a large set of genes involved in cell stress response, motility, pathogenesis, and toxin production were selected for a gene expression study. Reverse transcription-quantitative PCR (RT-qPCR) showed that in response to treatment with ZnO nanoparticles, the expression levels of two oxidative stress genes (katA and ahpC) and a general stress response gene (dnaK) were increased 52-, 7-, and 17-fold, respectively. These results suggest that the antibacterial mechanism of ZnO nanoparticles is most likely due to disruption of the cell membrane and oxidative stress in Campylobacter.
منابع مشابه
Chemical synthesis of Zinc Oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus
In this study, Zinc Oxide nanoparticles (ZnONPs) were synthesized by chemical method and their antibacterial efficiency against a clinical isolate of Staphylococcus aureus was studied. The Zinc Oxide nanoparticles have shown a commendable inhibition effect on the growth of most notorious bacterial pathogen S.aureus. The nanoparticles size and shapes were characterized by trans...
متن کاملChemical synthesis of Zinc Oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus
In this study, Zinc Oxide nanoparticles (ZnONPs) were synthesized by chemical method and their antibacterial efficiency against a clinical isolate of Staphylococcus aureus was studied. The Zinc Oxide nanoparticles have shown a commendable inhibition effect on the growth of most notorious bacterial pathogen S.aureus. The nanoparticles size and shapes were characterized by trans...
متن کاملStudy on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens
BACKGROUND Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. The aim of this work was to investigate the antibacterial effects and mechanism of action of MgO nanoparticles against several important foodborne pathogens. RESULTS R...
متن کاملInvestigation of the antimicrobial effect of silver doped Zinc Oxide nanoparticles
The antimicrobial effect of metal nanoparticles such as zinc oxide and silver nanoparticles has been taken into great consideration separately during recent years. The useful application of these nanoparticles in the areas of medicine, biotechnology, and professional prevention of microbes motivated us. The aim of this study was to evaluate antibacterial activity properties of silver doped zinc...
متن کاملKinetics activity of Yersinia Intermedia Against ZnO Nanoparticles Either Synergism Antibiotics by Double-Disc Synergy Test Method
Background: Bacterial resistance to the commonly used antibacterial agents is an increasing challenge in the medicine, and a major problem for the health care systems; the control of their spread is a constant challenge for the hospitals. Objectives: In this study, we have investigated the antimicrobial activity of the Zinc Oxide nanoparticles against clinical sample; Yersinia intermedia bact...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 7 شماره
صفحات -
تاریخ انتشار 2011